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Abstract

This paper presents an algorithm for solving the multi-dimensional

unsteady Navier-Stokes equations for compressible flows. It is based on a

diagonally-dominant approximate factorization procedure. The

factorization error and the timewise linearization error associated with this

procedure are reduced by performing Newton-type inner iterations at each

time step. The inviscid fluxes are evaluated by the fourth-order central

differencing scheme amended with a numerical dissipation directly

proportional to the entire dissipative part of the truncation error intrinsic

to the third-order-biased upwind scheme. The important features of the

proposed solution algorithm and the finite-difference scheme are

elucidated by the numerical results of the convection of a vortex and the

backward-facing step flows. I



1. Introduction

In the past, both upwind and central differencing schemes have been

used in the solution algorithms for the Navier-Stokes equations. These two

approaches have their relative merits and shortcomings. One of the

objectives of the present effort is to find a scheme that combines the

merits of both central differencing and upwind differencing schemes.

Another objective is to construct a multi-dimensional solution algorithm

which is not only time-accurate but also robust with respect to this new

differencing scheme.

In this work, the development of such an algorithm is based upon a

Diagonally-Dominant Alternating-Direction-Implicit (DDADI) approximate

factorization procedure [1] in conjunction with a Newton-type iterative

process [2] for implicitly advancing the solution from one time level to the

next. A description of this solution algorithm is given in Section 2. In

Section 3, it is shown that the proposed difference scheme can be

characterized as a fourth-order central differencing scheme with its added

dissipation being consistent with the numerical dissipation intrinsic to the

third-order-biased upwind scheme, and is termed here as the FCTD

differencing scheme (Fourth-order Central with Truncation-error-type

Dissipation).

The convection of an inviscid vortex in free stream has been used to

study the performances of the proposed algorithm/scheme. Some selected

results of this test case are presented in Section 4. To demonstrate its

applicability for the viscous flows, the proposed algorithm/scheme has also

been used to calculate the flows over a backward-facing step. The

comparisons between the calculated results and the corresponding

experimental data are shown in Section 5. The stability characteristics of
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the proposed algorithm/scheme when applied to a three-dimensional

domain are described in the Appendix.

2. The Iterative Implicit Diagonally-Dominant

Approximate Factorization

This is the overall algorithm for solving the unsteady multi-dimensional

compressible Navier-Stokes equations. To describe this algorithm, we

consider the two-dimensional Navier-Stokes equations written in

generalized coordinates (_, rl),

(1)

where Q=O/d ; O=(p, pu, pv, e)r, and J = _x'fly-_yTIx is the metric Jacobian.

Here, x is the time; p is the fluid density; e is the total internal energy per

unit volume; u and v are the velocity components in the x and y directions

of a Cartesian coordinates system. The transformed inviscid fluxes are

denoted by E and F; and the transformed viscous fluxes are denoted by Ev

and Fv. The specific forms of these transformed fluxes are well known and

will not be repeated here.

To advance the solution of Eq. (1) from the n-th time level to the (n+l)-

th level, the iterative implicit technique of Ref.[2] is adopted. Furthermore,

the three-point backward time differencing is used to attain the second-

order temporal accuracy. Let

(l_f_l} = [{l+1} /dl}, l = 1,2,3,... m (2)
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-->[,xe/ = -Q , m --_ o_
l =1

(3)

(4)

where f denotes an arbitrary quantity, 1 represents an iteration index and

m is an intermediate iteration level between the n-th and the (n+l)-th

time levels. The application of the iterative implicit technique to Eq. (1)

then yields

(5)

where a= 1.5 and

RHS(ra)=- 1--_am_l(_l)ATI-l=1 +(1-aXi_n'l)]

(6)

Eqs. (5) and (6) represent a Newton-type of timewise linearization on

(n+ l )
Eq. (1) with as the independent variable. By iterating to

convergence, the linearization errors associated with the residuals of the

RHS can be driven to zero. Thus, on its convergence, the RHS approaches to

a fully implicit nonlinear backward time differencing approximation of the

entire unsteady Navier-Stokes equations. The numerical evaluation of the

fluxes in Eq. (6) is discussed in Section 3. In the following, the construction

of operators approximating the variation of fluxes appearing in the left

hand side of Eq. (5) is described.
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Associated with each inviscid flux vector, there exists a Jacobian matrix

which can be further split into two parts, one is associated with

nonnegative eigenvalues and the other with nonpositive eigenvalues. For

example,

A+= A =

, _0QJ ( 7 )

A

are the split Jacobian matrices associated with the flux vector E. For

convenience, the symbol '^' will be dropped from the flow quantities in the

subsequent equations and discussion.

By applying the first-order upwind split-flux technique in the context of

a Newton-type linearization procedure, the operator approximating the

variation of the convective flux is of the following form:

_ gE )i, j = AI--_- Ai+-I, j( _Q )i- I, j + (A--i+,j - A-_,j _ _Q )i, j + Ai'+ l, j( _Q )i + l, j] (8)

In Ref. [3], the matrices A+ and A- are evaluated according to

and

_1/_ 1,j = A/_.I_/ A i+l ,i = A i+ l ,j

_*j. = A_ Aid = Ai_j (9)

where A _ and A are defined by Eq. (7).

evaluated at the Roe-averaged state [4].

In the present work, _,÷ and A- are

For example,

_*. ,,j = A *(i - 1, i;_/) (10a)
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which means that the flow variables are evaluated at the Roe-averaged

state between the nodal points (i-l, j) and (i, j) while the metrics are

evaluated at the nodal point (i, j), rather than at the intermediate point

(i-1/2,j). The rest of the matrices are evaluated according to

_ = A*(i -1, i ; _/) =,_4"-1d (10b)

Ai__j = A " (i , i + 1,;F,i) = A/'+ld (10c)

The same technique is applied to evaluate _9/0r/(SF)ij, in which the

associated split matrices are denoted by /3 + and /3-. Thus, the inviscid terms

in Eq. (5) yield

F,}i,j + _Fk, j = [ D + L + U](SQ)i, j (11)

where the operators [D], [L], and [U] are defined as

[D]( " )i,j = (Ai, j" _,j + Bi,j " -Bi, j)( " )i,j (12a)

.-7--+ --+

(12b)

[U]( . )i,j = (Ai+l,j)( " )i+l,j + (Bi, j+l)( " )i,j+l (12c)

The construction of the operator approximating the variation of the

viscous fluxes follows the approach of a pointwise Jacobi-iteration
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procedure, in which only those parts directly adding terms to the diagonal

operator, i.e. Eq. (12a), are retained. The detailed forms of these terms are

rather involved and are not shown here. Let V represent the Jacobian of

these terms, then, the viscous terms in Eq. (5) yield

+  -aeo) = [ j (13)

where the operator [S] is defined as

(14)

It is further noted here that, if there are external source terms due to, e.g.,

gravitational acceleration or heat addition, these terms will be, along with

Vi,j, included in the operator [S].

Let I be the identity operator, the evolution process of Eq.(5) is then

approximated by

[aI + A_(S + D+ L + U ) ] (SQ }i, j = z_v(RHS) i, j (15)

In practice, Eq. (15) is solved by the approximate factorization procedure.

In addition, the diagonally-dominant treatment suggested in Ref. [1] is

adopted. However, the splitting technique used in the present work is

different from that suggested in Ref. [1]. A brief description of the original

DDADI algorithm and a demonstration of its numerical instability when the

central differencing scheme is used for the inviscid flux terms are given in

the Appendix. In the present work, the original splitting technique is

modified to enforce the operational symmetry of the factorization. As
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demonstrated in the Appendix, this modification renders the overall

solution algorithm numerically stable with respect to the central

differencing scheme. The presently proposed splitting requires that the

temporal iterations are carried out in pairs of advancing steps.

(¢_Q)l+ lLet (6Q) t denote the solution of the first advancing step and the

solution of the second advancing step of a pair, then (_Q)t at point (i,j) is

obtained by solving

(16a)

(16b)

, _ _I+1
and I_]_ is obtained by solving

I<,/+,,,,'s+-+ : +} (17a)

(17b)

These equations are solved by a pointwise Jacobi-iteration procedure.

The results obtained from several numerical experiments focused on the

extra-long time behavior of randomly perturbed uniform background flow

suggest that the proposed algorithm would be numerically stable, both in

two-and three-dimensional cases, with respect to a variety of differencing

schemes described in the following section. It is also noted here that the

extension of this LU type of factorization to three-dimensional case is quite



straight forward, no additional sweep is needed to account for the added

third dimension.

3. The FCTD Differencing Scheme For The RHS Derivatives

In the past, both central and upwind differencing have been employed

to evaluate the RHS spatial derivatives. The third-order-biased upwind

scheme (see e.g. Ref.[5]) is the lowest order scheme satisfying the

requirement that the leading truncation error is dissipative but not

directly contaminating the physically diffusive terms, and it has a stencil

of five grid points in each spatial direction. The fourth-order central

differencing also has a five-point stencil but the scheme resolution is

higher. However, it is non-dissipative by nature, hence allows the

excitation of spurious short-wave length modes. In order to suppress

these spurious modes, numerical dissipation models (see e.g. [6]) containing

fourth-difference dissipation terms are often artificially added to the finite

difference equations. These artificial dissipation terms are not consistent

with the Navier-Stokes equations. In the following, an analytical way of

injecting numerical dissipation to the fourth-order central differencing

scheme is presented. For convenience, the index j associated with the rl-

direction is dropped in the subsequent discussion.

Let [TU](E)i denote the third-order-biased upwind differencing of the

first derivative of E at the spatial point (i,j), then

-_-_ t+l "Ei-1) + +

+L6_(.AEi_ 1 + 2 ,SEi - AEi+I) (18)
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where E is the total flux, E ÷ and E the split fluxes, h = A_ the grid spacing

in computational space and A is the forward differencing operator defined

as A(. _ -- (. _+1 - (" _. Under the current effort, the flux-difference

splitting suggested by Roe [4] is used in Eq.(18).

A Taylor's series analysis shows that the truncation error associated

with the third-order-biased upwind differencing

dissipative part (DISS) and a dispersive part (DISP).

[rV]tE)i-- [ tss JtE)i÷[DisP

where

and

has two parts: a

[ DISS ] (E)i =
l=4, zll=2 3- o{l

[DISP](E_ = l=5,_Al=23(4-21-1)lhl'1(_lE)i

(19)

(20)

(21)

The dissipative part, characterized by the fourth - and higher even -

derivatives is given by Eq. (20). The dispersive part, characterized by the

fifth and higher odd - derivatives is given by Eq. (21). It is further noted

here that the dissipative part depends on the derivatives of the absolute

flux defined as IEI = E + E, while the dispersive part depends on the

derivatives of the total flux.

Let [FC](E)i denote the fourth-order central differencing of the first

derivative of E at the spatial point (i,j), then

[FC](E}i = 3h(Ei+, - Ei.1)-ll{Ei+2 - Ei-2) (22)

It can be shown that
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where

[ FC](E}i = -_ + [ DISP]* (E)i

[ DISP ]* (E_ = l=5, Al=2 _'9¢ l ]i

(23)

(24)

i.e., the truncation error associated with the fourth-order central

differencing is entirely dispersive. By comparing Eq. (24) with Eq. (21), it

can be seen that [DISP]*(E)i is exactly the same as [DISP](E)i. This fact,

then, allows the establishment of a working formula for evaluating

[DISS](E)i.

Subtracting Eq. (23) from Eq. (19) and using the fact that

[ DISP]* (E)i = [ DISP ](E)i (25)

the dissipative part of the truncation error is then given by

[DISSJ(E)i = [ TUJ(E)/ - [FCJ(E)i (26)

Now that a closed form of [DISS](E)i becomes available, it can be used to

inject numerical dissipation into higher-order central differencing schemes.

Here, the scheme under concern is of the fourth-order, and the amended

scheme is termed as the fourth-order central differencing with truncation-

error- type dissipation (FCTD) scheme. More specifically,

[ FCTDJ(E)i = [FCJ(E)i + fl[ DISS ](E)/ (27)
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where 13 is an adjustable constant.

for FCTD scheme is then

Through Eq. (26), the working formula

[ FCTD]{E}i = (1-fl)[FC]{E_ + fl[ TU](E}i (28)

where [TU](E)i and [FC](E)i are given by Eq. (18) and Eq. (22) respectively.

Since

dE}i+ [ DISP ](E}iEFCTD]{E)i = -_ fl[ DISS ](E}/+ (29)

the effective truncation error of the proposed scheme is I3[DISS](E)i +

[DISP](E)i. It can be seen from Eq. (28) that, when 13=0, FCTD becomes the

fourth-order central differencing scheme without numerical dissipation,

and, when 13=1, it becomes the third-order-biased upwind scheme.

In a nutshell, the proposed FCTD scheme is an amended fourth-order

central differencing scheme with its injected numerical dissipation having

the same form as the entire dissipative part of the truncation error

intrinsic to the third-order-biased upwind scheme. Such a dissipation is

essentially an infinite series with its elements being the fourth - and

higher even derivatives of the absolute flux. The relative amount of

added dissipation can be controlled through an adjustable parameter 13. It

is further noted here that the FCTD scheme yields finite-difference

approximations which are consistent with the physical flux derivatives.

In regard to the evaluation of the viscous terms in Eq. (6), these terms

are first written in the strong conservation form. Then, half-spacing

second-order central differencing scheme is used to evaluate the
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derivatives, and simple average is employed to provide mid-point values

of transport coefficients. The details of these terms are not shown here.

4. Results - The Convection of a Free Vortex

In references [7,8], the convection of a Lamb-type vortex in a free

stream was used as a test case for assessing numerical schemes' ability to

preserve and convect concentrated vortices. This test case also is used

here to infer the dissipative, dispersive and resolution properties of the

proposed scheme.

In test calculations, the reference length is the vortex core radius; the

reference flow conditions are the free stream conditions. The number of

grid points used is 241 x 61. Figure 1 depicts the computational domain

and the grid distribution. In the region containing the vortex path (i.e., -5

< x ___50, -5 _< y --- 5), the grid spacing is uniform with Ax=Ay=0.25. At

t=o, the vortex center is located at the origin (x-o, y=o). The initial

condition and the subsequent unsteady boundary conditions are specified

through the analytic solution [8] which corresponds to the vortex being

convected with a free stream having a Mach number M_=0.5. The vortex

flow rotates in the clockwise direction. The center pressure (Pc) is a

minimum having a value of 0.84. The farfield free stream pressure is

P_=I.0. The vorticity magnitute of this vortex is shown in Fig.2. The

subsequent convection of this vortex is calculated with a constant time

step At=0.05, which is used in all the test calculations. These calculations

are terminated when the vortex center has traveled a distance of 45 core

radii, and this requires a total of 900 time steps. It is further noted here

that the advancement of one time step consists of two pairs of Newton-

type inner iterations. Based on our experience, this value of the number of
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inner iterations represents an optimal use of computer resources for the

present problem.

The results obtained by applying the third-order-biased upwind scheme

are shown in Figs. 3 and 4. The pattern of vorticity magnitude contours is

well preserved, yet there is significant dissipation of vortex strength. It is

noted here that the formal accuracy of this scheme is of the third order,

and the leading truncation-error term is a dissipative fourth-derivative.

The fourth-order central differencing scheme has the same computational

stencil as that of the third-order-biased upwind scheme, but is formally of

higher order accuracy. The fourth-order central differencing scheme is

intrinsically non-dissipative, and the leading truncation-error term is a

dispersive fifth-derivative. Therefore, it can be expected that, without the

injection of artificial dissipation, the vortex strength would be better

preserved, but spurious short-wave-length components would emerge.

These features are demonstrated by results shown in Fig.5 and Fig.6. To

suppress the excitation of spurious components, the fourth-difference

artificial viscosity model [6] with 13"=0.015 is used (hereafter, termed as

the FCAV scheme), and the results are presented in Figs. 7 and 8. The

excitation of phase errors is successfully suppressed during the period of

this simulation, and the preservation of the vortex strength is just as good

as that shown in Fig. 6. For FCTD scheme, the coefficient of the leading

dissipative fourth-derivative term will have a numerical value of 0.015, if

13 is chosen to be 0.18. Fig. 9 indicates that the vorticity pattern obtained

by using the FCTD scheme is well preserved. By comparing Fig. 7(b) and

Fig. 9(b), it can be seen that, in Fig. 7(b), there exist incipient short-wave-

length components, while the contours in Fig. 9(b) do not exhibit these
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spurious components. The results shown in Fig. 10 are slightly more

dissipated than those in Fig. 8.

The proposed FCTD scheme with 13=0.18 is more accurate than the third-

order-biased upwind scheme, but is slightly more dissipative than the

FCAV scheme with 13"=0.015. However, the complete absence of spurious

short-wave-length components from the contours of vorticity magnitude

makes the FCTD differencing a more reliable scheme than the FCAV

scheme. The above results are for the case of M_=0.5. Flows with Moo=I.0

and M_-l.6 have also been calculated to compare the performances of the

schemes in transonic and supersonic regimes. They lead to the same

conclusions.

5. Results - The Backward-Facing Step Flows

The application of the proposed algorithm/scheme to the solution of the

full Navier-Stokes equations is demonstrated by calculating flows with

regions of separation behind a backward-facing step mounted in a two-

dimensional channel. The calculated results are then compared with the

corresponding experimental data reported in Ref. [9]. This experimental

study concluded that, in the laminar range (Re<1200), the flow will

maintain its two-dimensionality only when Reynolds number Re<400. The

definition of the Reynolds number is given by Re=u(2h)/v, where u is the

average inlet velocity, which corresponds to two-thirds of the maximum

inlet velocity, h is the height of the inlet channel, and v is the kinematic

viscosity. In addition, the channel height downstream of the step is

H=l.9423h, and the step height S=0.9423h. Fig. 11 depicts the size of the

computational domain and the grid distribution. The number of grid

points is 81x31.
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Under the current effort, all the calculations were carried out with

Mi=0.18 and Pr=0.72, where Mi is the Mach number based on u, and Pr is

the laminar Prandtl number. The calculations started with some guessed

initial conditions and proceeded until a steady state was reached. The

criterion for reaching an asymptotic steady state is that the maximum L2-

norm residual is smaller than 5x10 "5.

Both the fourth-order central differencing with constant-coefficient

fourth-difference artificial dissipation (13"=0.5), i.e. the FCAV scheme, and

the proposed FCTD scheme (13=0.5) have been employed to calculate the

flows with Reynolds numbers in the laminar range: Re=100, 389, and

1000. The calculated streamwise velocity profiles at stations downstream

of the step and their corresponding experimental data are shown in Fig.

12(a) (Re=100), Fig. 12(b) (Re=389), and Fig. 12(c) (Re=1000). For Re=100

and 389, the flows are experimentally two-dimensional, and the present

two-dimensional numerical results agree very well with the measured

data in terms of the reattachment lengths (shown in table I), and the

streamwise velocity profiles (shown in Fig. 12(a) and 12(b)). Furthermore,

the results obtained from the two numerical schemes are practically

indistinguishable. At Re=1000, the experiment indicated that the flow

loses its two-dimensionality. This is reflected in the apparent

discrepancies between the experimental data and the two-dimensional

numerical results as shown in Fig. 12(c). It is noted here that this kind of

discrepancy also exists between the experimental data and two-

dimensional numerical results obtained by using other schemes (see e.g.

Ref. [9]). It can also be seen that, in the recirculating region, there are

some differences between the results obtained from the two numerical

schemes. Nevertheless, these differences are considered here as

16



insignificant.

These two schemes are further compared in terms of the contour plots

of the static pressure (Fig. 13 and Fig. 14). For all the practical purposes,

the corresponding contour plots can be considered as the same. However,

they do reveal some subtle differences in the dissipative features of the

two schemes. The FCAV scheme is more effective in smoothing out sharp

pressure wiggles associated with the rapid variation of grid spacing in the

middle of the larger channel. Although not shown here, it is less effective

in damping out the small-amplitude high-wave-number modes of the

velocity.

6. Concluding Remarks

The FCTD differencing scheme and an overall solution algorithm have

been developed to solve the multi-dimensional unsteady Navier-Stokes

equations for compressible flows. The basis of the solution algorithm is a

diagonally-dominant approximate factorization procedure. The

factorization error and the timewise linearization error associated with this

baseline procedure are reduced by performing Newton-type inner

iterations at each time step. The robustness of the overall algorithm is

enhanced by carrying out the temporal iterations in pairs to enforce the

operational symmetry of the factorization procedure. The temporal

accuracy is increased to second-order by using the three-point backward

time differencing. The viscous fluxes are evaluated by using the half-

spacing second-order central differencing scheme. The inviscid fluxes are

evaluated by the proposed FCTD scheme, which is an amended fourth-

order central differencing scheme with its injected numerical dissipation

having the same form as the entire dissipative part of the truncation-error
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intrinsic to the third-order-biased upwind scheme. The convection of a

free vortex and the backward-facing step flows are chosen as test cases to

demonstrate the current capability of this solution algorithm and the FCTD

scheme. These numerical results compare well with corresponding

analytical solution or experimental data.

Appendix" The DDADI Algorithm and an Investigation of Its

Numerical Stability

In terms of the notations used in Eq. (16) and Eq. (17), the DDADI

algorithm suggested in Ref.[1] can be written as

and

[ ol + AT(S+D+L)](i_)* = A_(RHS) l

[ at + ArCS+ D +U)](_) z = A_CnHS)t- [ ad, ](_)"

[ ca + a_(s +o + u)](_)'* = aTfnHS) z+I

[ at + A_(S+D+L)]{(SQ_+I = A_(RHS) l+1 . [ zizU](_Q)"

(Al.a)

(Al.b)

(A2.a)

(A2.b)

where Eq. (A1) is the counterpart of Eq. (16) and Eq. (A2) is the

counterpart of Eq. (17). For convenience, the spatial indices i,j and k have

been dropped from these equations. By comparing the respective

counterparts, it can be seen that the main difference lies in the treatment

of the off-diagonal contributions at the corrector's stage.

A measure of the factorization errors associated with a pair of

temporal iterations described by Eqs. (A1) and (A2) is

= + A,<s+ z
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÷(a,F{[v][_. a,es + Dj]-%]}(_)z÷_ (A3)

For the presently proposed algorithm described by Eqs. (16) and(17), a

measure of the factorization errors is

+(a_F{[L][a. a_cs+z))]-*[u]}(_o)"

+ (ziv)2{[U][a/+ zlr(S + D)]'I[L]}(_) ** (A4)

Upon the convergence of the temporal iterations, both e and e* are

asymptotically removed.

Numerical experiments were conducted to examine the stability

characteristics of the original DDADI algorithm and the presently proposed

algorithm. In the following, the stability characteristics of these two

algorithms when applied to a three-dimensional domain are presented.

Fig. A-1 shows the stretched-grid layout of this rectangular domain in a

physical space occupied by an inviscid uniform flow with Mach number

being 0.35. When the Euler equations are numerically solved to simulate

the evolution of this flow, initially broad-band and infinitesimal

disturbances originating from the machine round-off error as well as the

truncation error associated with the grid stretching will be introduced into

the uniform background flow. The subsequent growth of these

disturbances is closely related to the numerical stability property of the

solution algorithm and differencing scheme. The observed long-time
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growth behavior of the disturbances serves to indicate the stability

characteristics of the overall solution procedure.

The domain of a 2xlxl box shown in Fig. A-1 is covered by 21xllx7

grid points, and the background flow is in the x (i.e. I)-direction. The

boundary conditions for this investigation are

I = 1 : u = 1, v=w=O, T=I, _2p-o

c)n2

J = 1, K = I : symmetry conditions

I = 2L J = 1L K = 7 :
au _ &v 31'

_n _n _n _n
=O,p = 1

(A5)

where n denotes the normal direction.

First-order time-accurate calculations without employing the inner

Newton-type iteration process have been conducted. The RHS inviscid flux

terms are evaluated with the fourth-order central differencing without

any added numerical dissipation. The initial condition is an uniform flow.

The time-step used is a constant and has a CFL number of 250. The mid-

point, i.e., the point at (I=11, J=6, K=4), is selected as the representative

point for illustrating the stability characteristics.

In the case of the original DDADI algorithm [1], the temporal growth of

the initially infinitesimal velocity disturbances is depicted in Fig. A-2. It

can be seen that, within 2100 time-steps, the disturbances tend to grow

out of bounds, and this algorithm is considered as unstable with respect to

the fourth-order central differencing scheme under the present test

condition.

20



The solutions at the 2000-th time-step are then used as the initial

condition for investigating the stability properties of the presently

proposed algorithm. Part of the results are shown in Fig. A-3, which

covers a period of the first 4000 time-steps. An additional 16000 time

steps have been advanced. Although the entire history of convergence is

not shown here, it is clear that converged solutions with the magnitudes of

v-component and w-component of the order ofl0 -11 are obtained (machine

accuracy is of the order of 10-13). The above result suggests that the

presently proposed algorithm is numerically stable in three-dimensional

domain.
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Fig. I Computational domain and grid distribution for vortex

convection tests (only every other grid lines are shown).

Fig. 2

t

Contours of the vorticity magnitude (t=O). Increment levcl---O.0275.

(a) t = 25.0 (b) t = 45.0

Fig. 3 Contours of the vorlicity magnitude (3rd - order - biased

upwind differencing). Increment lev¢1---0.0275.
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Fig. 4

Fig. 5
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Static pressure profile along the centerline at different

time stadons (3rd - order - biased upwind differencing).

f
(a) t = 25.0 (b) t = 45.0

Contours of the vonicity magnitude (4th - order central

differencing without artificial dissipation). Increment levcl=O.0275.

Fig. 6
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X

Static pressure profile along the centerline at different

time stations (4th - order central differencing without

artificial dissipation).
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(a)t= 25.0 (b)t= 45.0

Fig.7 Contours of the vorticitymagnitude (FCAV scheme with 6"

= 0.015). Increment Iev¢I_0.0275.
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Fig. 8 Static pressure profile along the centerline.at different

time stations (FCAV scheme with 15" = 0.015).

(a)t = 25.0 Co)t = 45.0

Fig. 9 Contours of the vorticity magnitude (FCTD schemc with 13 =

0.18). Increment level=O.0275
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Fig. 10
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Static pressure profile along the ccnterline at different

time stations (FCTD scheme whh J) = 0.18).

x=-3

x=0

Fig. I1

x=37

Computational domain and grid distribution for backward-

facing step flows (only every other grid lines are

shown).

Re Data R1 S2 R2
FC'FD 2.98

100 FCAV 2.94

389

50O

600

1000

Exp
FCTD

3.0
7.71

FCAV 7.60
7.8Exp

FCrD N.A N.A N.A

FCAV 8.85 7.70 11.70
10.0 8.2 13.5

FCTD N.A N.A N.A
FCAV 9.73 8.04 14.10

11.2 8.6 14.8.Exp
FCTD

Exp

11.72 9.23 22.43

FCAV 12.06 9.46 21.81
16.2 13.4 21.8

Table 1

I_ s2----"t . R= .J

Measured and computed detachment and reattachment length.

The flow pattern shown is the contours of streamwise

velocity when Re = 1000.
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Fig. 12 Streamwise velocity profiles.
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Fig. |3 Contours of the static pressure (FCTD scheme with [3 = 0.5).
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Fig. 14 Contours of the static pressure (FCAV scheme with 13" = 0.5).

-1 numerical stability.

Computational domain and grid distribution for test of

-m

w_fmo

I-

.areat a _ t

i7
li_ illi

ii
-m

.,im_ - m m im m xl

Fig. A-2 Temporal evolution of the velocity disturbance at the

mid-point (original DDAD| algorithm)

Fig. A-3 Temporal evolution of the velocity disturbance at the

mid-point (time-step: I - 4000)
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